Miejsce zatrudnienia

Uniwersytet Śląski w Katowicach, 40-007 Katowic, ul. Bankowa 12

Aktualnie pełnione funkcje na uczelni

Dyrektor

Instytutu Inżynierii Biomedycznej

Przewodniczący

Rady Naukowej Instytutu Inżynierii Biomedycznej

Kierownik

Laboratorium ilościowej Analizy i modelowania powierzchni biomateriałów

Przebieg pracy zawodowej

(2019 - nadal)

profesor uczelni, Instytut Inżynierii Biomedycznej, Wydział Nauk Ścisłych i Technicznych

(2018 - 2019)

profesor uczelni, Zakład Komputerowych Systemów Biomedycznych, Instytut Informatyki, Wydział Informatyki i Nauki o Materiałach

(2010 - 2018)

adiunkt, Zakład Komputerowych Systemów Biomedycznych, Instytut Informatyki, Wydział Informatyki i Nauki o Materiałach

(2006 - 2010)

adiunkt, Zakład Badań Warstwy Wierzchniej, Katedra Materiałoznawstwa, Wydział Informatyki i Nauki o Materiałach

(2000 - 2006)

asystent, Zakład Badań Warstwy Wierzchniej, Katedra Materiałoznawstwa, Wydział Informatyki i Nauki o Materiałach

Wskaźniki bibliometryczne

0

PUBLIKACJE

0

ARTYKUŁY na liście JCR

0

sumaryczny IF

2

Średni IF na publikację

15

projektów naukowych

67

współpracujących jednostek naukowych

115

Zrealizowanych prac dyplomowych

1

zrealizowanych doktoratów

Wykształcenie

(2016 - 2017)

doktor habilitowany nauk technicznych w dyscyplinie biocybernetyka i inżynieria biomedyczna, Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza Polskiej Akademii Nauk

(1999 - 2005)

doktor nauk technicznych, studia doktoranckie na Wydziale Matematyki Fizyki i  Chemii Uniwersytetu Śląskiego w Katowicach

(1994 - 1999)

magister techniki, jednolite studia magisterskie na Wydziale Techniki Uniwersytetu Śląskiego w Katowicach, kierunek: Wychowanie Techniczne, specjalność: Technika i  Informatyka

Praca naukowa

  • Wpływ czynników strukturalnych na właściwości ceramiki sialonowej w ujęciu metod materiałografii i fraktografii ilościowej, 2004-2006, 4T08D 01822, współwykonawca
  • Rozwój metod ilościowego opisu mikrostruktury i powierzchni materiałów, Podtemat: Komplementarne zastosowanie parametrów multifraktalnych, transformaty falkowej i perkolacji w opisie powierzchni przełomu materiału, 2009, BW-08-0500-017-09, kierownik projektu i wykonawca podtematu
  • Wyposażenie laboratorium ilościowej analizy i modelowania powierzchni biomateriałów w pomiarowy skaningowy laserowy mikroskop konfokalny, 2010-2012, 599/FNITP/160/2010, autor projektu, kierownik i główny wykonawca
  • Computational modelling of biomechanics in the musculoskeletal system: tissues, replacements and regeneration, Podtemat: Modelling fracture processes in orthopaedic implants, 2011-2014, Projekt międzynarodowy, wykonawca podtematu
  • Opracowanie nowych gatunków supergruboziarnistych węglików spiekanych z osnową zawierającą nikiel, 2012-2013, N507 222240, Politechnika Śląska, wykonawca badań
  • Characterization of surface roughness of Pt Schottky contacts on quaternary n Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis, 2012-2014, Malaysia financial support under 1001/PFIZIK/843088 grant, współwykonawca
  • Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation, 2013-2014, Research was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (Project no. 172003), współwykonawca
  • Multifractal characterization of water soluble copper phthalocyanine based films surfaces, 2012-2014, Ministry of Education, Youth and Sports of the Czech Republic, Project CZ.1.07/2.3.00/30.0021 "Strengthening of Research and Development Teams at the University of Pardubice", współwykonawca
  • Micromorphology characterization of SiO2-based composite thin films with immobilized terbium(III) complex, 2013-2014, The financial support of the BG Fund for Scientific Investigations, Project DO 02-129/08, współwykonawca
  • AFM imaging and fractal analysis of surface roughness of AlNepilayers on sapphire substrates, 2013-2014, Financially supported by the European Centre of Excellence CEITEC CZ.1.05/1.1.00/02.0068,by project Sensor, Information and Communication Systems SIX CZ.1.05/2.1.00/03.0072 as well as by grant FEKT-S-14-2240, współwykonawca
  • Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a biscoumarin derivative, 2014-2015, The financial support of the BG Fund for Scientific Investigations, Project DO 02-129/08, współwykonawca
  • Surface roughness and morphology of dental nanocompositespolished by four different procedures evaluated by a multifractalapproach, 2014-2015, Research realized in the frameworks of the projects: TR 035020 and III-45006 financed bythe Ministry of Education, Science and Technological Developmentof Republic of Serbia, współwykonawca
  • Morphological features in aluminum nitride epilayers prepared by magnetron sputtering, 2014-2015, Research was financially supported by the European Centre of Excellence CEITEC CZ.1.05/1.1.00/02.0068, by project Sensor, Information and Communication Systems SIX CZ.1.05/2.1.00/03.0072 as well as by grant FEKT-S-14-2240, współwykonawca
  • Multifractal characterization of morphology of human red blood cells membrane skeleton, 2014-2015, This study was partially supported by the Grant of Polish Ministry of Science and Education N-N-402-471337, NCN (2011-2013) No 2011/01/N/NZ5/00919, współwykonawca
  • Epitaxy of silicon carbide on silicon: Micromorphological analysis of growth surface evolution, 2014-2015, Research was financially supported by the European Centre of Excellence CEITEC CZ.1.05/1.1.00/ 02.0068, by project Sensor, Information and Communication Systems SIX CZ.1.05/2.1.00/03.0072, Visegrad Fund. As well as State assignments no. 2560 and no. 16.1103.2014K, współwykonawca
  1. "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Dentistry, Department of Periodontology, 8 Victor Babes St., 400012, Cluj-Napoca, Romania
  2. "Iuliu Haţieganu" University of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Specialties and Medical Imaging, Discipline of Ophthalmology, 8 Victor Babeş St., 400012, Cluj-Napoca, Romania
  3. AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Nuclear Energy, al. Mickiewicza, Krakow, Poland
  4. AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Medical Physics and Biophysics, al. Mickiewicza, Krakow, Poland
  5. Alzahra University, Department of Physics, Tehran, Iran
  6. Arak University of Technology, Department of Mechanical Engineering, Arak, Iran
  7. Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 , Brno, Czech Republic
  8. Center of Research and Technological Development in Electrochemistry (CIDETEQ), Parque Tecnológico Sanfandila, Pedro Escobedo, 76703, Santiago de Querétaro, Mexico
  9. Ciudad Universitaria Puebla, Benemérita Universidad Autónoma de Puebla, Chemistry Center ICUAP, 72530, Puebla, Mexico
  10. Dagestan State University, Faculty of Physics, st. M. Gadjieva 43-a, 367015, Makhachkala, Dagestan Republic, Russia
  11. Dental Polyclinic, Perkovceva 3, 10 000 , Zagreb, Croatia
  12. Guru Nanak Dev University, Department of Physics, Material Science Research Laboratory, Amritsar, 143005, Punjab, India
  13. Institut "Rudjer Boskovic", Bijenicka Cesta 54, 10000, Zagreb, Croatia
  14. Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, QC J3X 1P7, Varennes, Canada
  15. Islamic Azad University, Arak Branch, Young Researchers and Elite Club, Arak, Iran
  16. Islamic Azad University, Kermanshah Branch, Department of Physics, Kermanshah, Iran
  17. Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Kermanshah, Iran
  18. Islamic Azad University, Science and Research Branch, Department of Physics, Tehran, Iran
  19. Islamic Azad University, Science and Research Branch, Plasma Physics Research Center , P.O. Box 14665-678, Tehran, Iran
  20. Islamic Azad University, West Tehran Branch, Department of Physics, Tehran, Iran
  21. Islamic Azad University, West Tehran Branch, Young Researchers and Elite Club, Tehran, Iran
  22. Istituto Italiano di Tecnologia, Nanophysics Department, Scanning Probe Microscopy Lab, Via Morego 30, I-16163, Genova, Italy
  23. Jagiellonian University, Collegium Medicum, Department of Internal Medicine and Gerontology, ul. Sniadeckich, Krakow, Poland
  24. Malayer University, Faculty of Science, Department of Physics, Malayer, Iran
  25. Medical University, Faculty of Pharmacy, Department of Organic Chemistry, Sofia, Bulgaria
  26. Nano Mabna Iranian Inc., P O Box 1676664116, Tehran, Iran
  27. Nuclear Sciences and Technology Research Institute, Physics and Accelerators Research School, Tehran, Iran
  28. Payame Noor University (PNU), Department of Physics, Tehran, Iran
  29. Payame Noor University, Department of Physics, P.O. Box 19395-4697, Tehran, Iran
  30. Razi University, Faculty of Science, Department of Physics, Kermanshah, Iran
  31. Razi University, Nano Science and Technology Research Center, Kermanshah, Iran
  32. SICLAB Limited Liability Company, st. M. Yaragskogo 75, 367030, Makhachkala, Dagestan Republic, Russia
  33. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, Department of Materials Science, Krasińskiego 8, 40-019, Katowice, Poland
  34. Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of Automotive Engineering and Transportation, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., 400641, Cluj-Napoca, Romania
  35. Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviviu Street, no. 15, 400020, Cluj-Napoca, Romania
  36. Univeristy of Silesia, Faculty of Computer Science and Materials Science, Department of Materials Science, Zakład Badań Warstwy Wierzchniej, Śnieżna 2, 41-200, Sosnowiec, Poland
  37. Univeristy of Silesia, Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer Systems, Będzińska 39, 41-200, Sosnowiec, Poland
  38. "Universidad Aut´onoma de Nuevo Le´on (UANL), Facultad de Ciencias F´ısico Matem´aticas (FCFM), Av. Universidad s/n, San
  39. Nicol´as de los Garza, Nuevo Le´on, Mexico"
  40. Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Fı´sico Matematicas, Av. Pedro de Alba s/n, San Nicola´s de los Garza, , 66455, Nuevo Leo´n, Mexico
  41. Universiti Sains Malaysia, School of Physics, Nano-Optoelectronics Research and Technology Laboratory, 11800, Penang, Malaysia
  42. University of Belgrade, Vinča Institute of Nuclear Sciences, Mike Alasa 12-14, 11001, Belgrade, Serbia
  43. University of Bu Ali Sina, Department of Physics, P.O. Box 65174, Hamedan, Iran
  44. University of Craiova, Faculty of Mechanical Engineering, Department of Applied Mechanics, Calea Bucureşti St., no. 165, 200585, Craiova, Dolj, Romania
  45. University of Hradec Kralove, Department of Physics, Rokitansk eho 62, 500-03, Hradec Kralove, Czech Republic
  46. University of Miami, College of Engineering, Biomedical Atomic Force Microscopy Laboratory, McArthur Annex Room 170A, 1251 Memorial Drive, FL 33146, Coral Gables, USA
  47. University of Milano Bicocca, Department of Materials Science and COMiB Research Center, Milano, Italy
  48. University of Milano Bicocca, Department of Materials Science, Piazza dell’Ateneo Nuovo, 20125, Milano, Italy
  49. University of Namur, Research Centre in Physics of Matter and Radiation (PMR), LISE Laboratory, B-5000, Namur, Belgium
  50. University of Novi Sad, Faculty of Medicine, Department of Restorative Dentistry and Endodontics, Clinic of Dentistry of Vojvodina, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
  51. University of Novi Sad, Faculty of Medicine, Department of Restorative Dentistry and Endodontics, Clinic of Dentistry of Vojvodina, School of Dentistry, Novi Sad, Serbia
  52. University of Novi Sad, Faculty of Medicine, School of Dentistry, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
  53. University of Novi Sad, Faculty of Technical Sciences, Department for Production Engineering, Trg Dositeja Obradovi´ca 6, 21000, Novi Sad, Serbia
  54. University of Pardubice, Faculty of Chemical Technology and Centre for Material Science, Department of General and Inorganic Chemistry, Studentská 573, 532 10, Pardubice II, Czech Republic
  55. University of Raparin, Department of Physics, College of Science, Iraq
  56. University of Silesia in Katowice, Faculty of Science and Technology, August Chełkowski Institute of Physics, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
  57. University of Silesia in Katowice, Faculty of Science and Technology, Institute of Biomedical Engineering, Będzińska 39, 41-200, Sosnowiec, Poland
  58. University of Silesia in Katowice, Faculty of Science and Technology, Institute of Materials Engineering, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
  59. University of Silesia, Faculty of Computer Science and Materials Science, Institute of Materials Science, 75 Pułku Piechoty 1a, 41-500, Chorzów, Poland
  60. University of Sofia, Faculty of Chemistry and Pharmacy, Department of Inorganic Chemistry, Sofia, Bulgaria
  61. University of Sofia, Faculty of Chemistry, Department of Inorganic Chemistry, Sofia, Bulgaria
  62. University of Thi-Qar, Physics Department, Science College, Nassiriya Nanotechnology Research Laboratory (NNRL), 00964, Nassiriya, Iraq
  63. University of Zagreb, Faculty of Metallurgy, Aleja narodnih heroja 3, 44000 , Sisak, Croatia
  64. University of Zagreb, School of Dental Medicine, Gunduliceva 5, 10000 , Zagreb, Croatia
  65. Vacuum Technology Group, ACECR - Sharif Branch, Tehran, Iran
  66. Wroclaw University of Technology, Faculty of Civil Engineering, Wrocław, Poland
  67. Wroclaw University of Technology, Faculty of Mechanical Engineering, Wrocław, Poland
  1. Piątkowski, Jarosław, Stanisław Roskosz, i Sebastian Michał Stach. 2024. „The Influence of Selected High - Pressure Die Casting Parameters on the Porosity of EN AB-46000 Alloy Castings”. Advances in Science and Technology Research Journal 18: 361–371. https://doi.org/10.12913/22998624/191236.
  2. Gabor, Jadwiga Helena, Grzegorz Mikrut, Tomasz Grzegorz Flak, Patryk Cebo, Robert Roczniok, Beata Swinarew, Ewa Langer, i in. 2023. „Influence of Surface Structure on Ball Properties During a Professional Water Polo Game”. Materials 16: 1–10. https://doi.org/10.3390/ma16083048.
  3. Niedbała, Jolanta, Magdalena Elżbieta Popczyk, Łukasz Hawełek, Szymon Orda, Hubert Józef Okła, Jadwiga Helena Gabor, Sebastian Michał Stach, i Andrzej Szymon Swinarew. 2022. „Production of Electrolytic Composite Powder by Nickel Plating of Shredded Polyurethane Foam”. Materials 15: 1–15. https://doi.org/10.3390/ma15113895.
  4. Swinarew, Andrzej Szymon, Tomasz Grzegorz Flak, Agnieszka Jarosińska, Żaneta Agnieszka Garczyk, Jadwiga Helena Gabor, Szymon Skoczyński, Grzegorz Brożek, i in. 2022. „Polyurethane-Based Porous Carbons Suitable for Medical Application”. Materials 15: 1–19. https://doi.org/10.3390/ma15093313.
  5. Garczyk, Żaneta Agnieszka, i Sebastian Michał Stach. 2021. „Three-Dimensional Model for Assessing the Pore Volume of Biomaterials Intended for Implantation”. W Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System Biomaterials and Tissues, zredagowane przez , 305–358. https://doi.org/10.1016/B978-0-12-819531-4.00013-4.
  6. Dercz, Grzegorz Stefan, Jagoda Barczyk, Izabela Maria Matuła, Tadeusz Kubaszek, Marek Góral, Joanna Maszybrocka, Dariusz Bochenek, i in. 2021. „Characterization of YSZ Coatings Deposited on Cp-Ti Using the PS-PVD Method for Medical Applications”. Coatings 11: 1–16. https://doi.org/10.3390/coatings11111348.
  7. Garczyk, Żaneta Agnieszka, Zbigniew Jaegermann, Piotr Jan Duda, Andrzej Szymon Swinarew, i Sebastian Michał Stach. 2021. „Ceramic Biomaterial Pores Stereology Analysis by the Use of Microtomography”. Materials 14: 1–11. https://doi.org/10.3390/ma14092207.
  8. Łosiewicz, Bożena, Patrycja Anna Osak, Joanna Maszybrocka, Julian Kubisztal, i Sebastian Michał Stach. 2020. „Effect of Autoclaving Time on Corrosion Resistance of Sandblasted Ti G4 in Artificial Saliva”. Materials, 1–26. https://doi.org/10.3390/ma13184154.
  9. Sapota, Wiktoria Antonina, Patrycja Szczepanik, Sebastian Michał Stach, i Zygmunt Wróbel. 2020. „Fractal and Multifractal Analyses of the Porosity Degree of Ceramics Used in Biomedicine”. Advanced Science, Engineering and Medicine, 450–456. https://doi.org/10.1166/asem.2020.2546.
  10. Stach, Sebastian Michał, Ştefan Ţălu, Rashid Dallaev, Ali Arman, Dinara Sobola, i Marco Salerno. 2020. „Evaluation of the Topographical Surface Changes of Silicon Wafersafter Annealing and Plasma Cleaning”. Silicon 12: 2563–2570. https://doi.org/10.1007/s12633-019-00351-x.
  11. Szklarska, Magdalena Irena, Bożena Łosiewicz, Grzegorz Stefan Dercz, Joanna Maszybrocka, Marzena Rams-Baron, i Sebastian Michał Stach. 2020. „Electrophoretic Deposition of Chitosan Coatings on the Ti15Mo Biomedical Alloy from a Citric Acid Solution”. RSC Advances, 13386–13393. https://doi.org/10.1039/d0ra01481h.
  12. Brożyna, M, Sebastian Michał Stach, i Zygmunt Wróbel. 2019. „Rozwój telemedycyny w Polsce po wdrożeniu „Elektronicznej Platformy Gromadzenia, Analizy i Udostępniania zasobów cyfrowych o Zdarzeniach Medycznych (P1)””. W Telemedycyna i e-zdrowie prawo i informatyka / Irena Lipowicz, Grażyna Szpor, Marek Świerczyński (red.), zredagowane przez , 89–104.
  13. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, i Zygmunt Wróbel. 2019. „Evaluation of Implant Surface Porosity Using IT Tools”. W The Book of Articles National Scientific Conference “Science and Young Researchers, III Edition - June 15, 2019, ŁÓdź, zredagowane przez , 59–66. Promovendi Foundation Publishing.
  14. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, Ştefan Tălu, Sobola Dinara, i Zygmunt Wróbel. 2019. „Segmentation of Three-Dimensional Images of the Butterfly Wing Surface”. W Information Technology in Biomedicine Proceedings 6th International Conference, ITIB’2018, Kamień ŚLąski, Poland, June 18-20, 2018, zredagowane przez , 111–121. https://doi.org/10.1007/978-3-319-91211-0_10.
  15. Płatek, Marcin, Wiktoria Antonina Sapota, Sebastian Michał Stach, i Zygmunt Wróbel. 2019. „Reconstruction of Gigapixel Stereometric Maps of Ceramic Surfaces”. W Information Technology in Biomedicine Proceedings 6th International Conference, ITIB’2018, Kamień ŚLąski, Poland, June 18-20, 2018, zredagowane przez , 101–110. https://doi.org/10.1007/978-3-319-91211-0_9.
  16. Sapota, Wiktoria Antonina, Sebastian Michał Stach, i Zygmunt Wróbel. 2019. „Devices Supporting Gait Reeducation”. W The Book of Articles National Scientific Conference “Science and Young Researchers, III Edition - June 15, 2019, ŁÓdź, zredagowane przez , 118–132. Promovendi Foundation Publishing.
  17. Dejam, Laya, Shahram Solaymani, Amine Achour, Sebastian Michał Stach, null ŞtefanŢălu, Negin Beryani Nezafat, Vali Dalouji, Ali Asghar Shokri, i Atefeh Ghaderi. 2019. „Correlation Between Surface Topography, Optical Band Gaps and Crystalline Properties of Engineered AZO and CAZO Thin Films”. Chemical Physics Letters 719: 78–90. https://doi.org/10.1016/j.cplett.2019.01.042.
  18. Dercz, Grzegorz Stefan, Izabela Maria Matuła, Joanna Maszybrocka, Maciej Jan Zubko, Jagoda Barczyk, Lucjan Pająk, i Sebastian Michał Stach. 2019. „Effect of Milling Time and Presence of Sn on the Microstructure and Porosity of Sintered Ti-10Ta-8Mo and Ti-10Ta-8Mo-3Sn Alloys”. Journal of Alloys and Compounds 791: 232–247. https://doi.org/10.1016/j.jallcom.2019.03.287.
  19. Rashid, Dallaev, Sebastian Michał Stach, Ştefan Ţălu, Dinara Sobola, Alia Méndez-Albores, Gabriel Trejo Córdova, i Lubomír Grmela. 2019. „Stereometric Analysis of Effects of Heat Stressing on Micromorphology of Si Single Crystals”. Silicon 11: 2945–2959. https://doi.org/10.1007/s12633-019-0085-4.
  20. Stach, Sebastian Michał, Ştefan Ţălu, Senour Abdolghaderi, Azizollah Shafiekhani, i Jahangir Bahmanie. 2019. „3_D Surface Stereometry of Ag/DLC Nanocomposite Prepared by RF-PECVD”. Results in Physics 15: 1–8. https://doi.org/10.1016/j.rinp.2019.102731.
  21. Stach, Sebastian Michał, Stefan Ţălu, Alicja Głuchaczka, Patrycja Siek, Joanna Zając, i Silvia Tavazzi. 2019. „Microscopic Investigations of Surface Texture of Siloxane‐hydrogel Contact Lenses”. Polymer Engineering and Science, 2.
  22. Stach, Sebastian Michał, Olga Kędzia, Żaneta Agnieszka Garczyk, i Zygmunt Wróbel. 2019. „Modelling the Degree of Porosity of the Ceramic Surface Intended for Implants”. Biomedizinische Technik 64: 215–223. https://doi.org/10.1515/bmt-2017-0169.
  23. Ţălu, Ştefan, Sebastian Michał Stach, Tijana Lainović, i Larisa Blažić. 2019. „Characterization of Spatial Patterns of Dental Restorative Nanocomposites”. Microscopy Research and Technique 82: 572–579. https://doi.org/10.1002/jemt.23270.
  24. Ţălu, Ştefan, Sebastian Michał Stach, Boris Klaić, i Asja Čelebić. 2019. „Evaluation of Topographical Co-Cr-Mo Alloy Surface Changes After Various Finishing Treatments”. Acta Stomatologica Croatica, 264–273. https://doi.org/10.15644/asc53/3/8.
  25. Ţălu, Ştefan, Sebastian Michał Stach, i Senour Abdolghaderi. 2019. „The Effects of Deposition Time on the Nanoscale Patterns of Ag/DLC Nanocomposite Synthesized by RF-PECVD”. Microscopy Research and Technique 82: 572–579. https://doi.org/10.1002/jemt.23203.
  26. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, i Zygmunt Wróbel. 2018. „Przetwarzanie i analiza obrazu w ocenie stopnia porowatości powierzchni bioceramiki”. W Współczesne problemy inżynierii materiałowej oraz mechaniki, zredagowane przez , 105–115.
  27. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, i Zygmunt Wróbel. 2018. „Przetwarzanie i analiza obrazu w ocenie stopnia porowatości powierzchni bioceramiki : [prezentacja ustna]”. W X Interdyscyplinarna Konferencja Naukowa Tygiel 2018 „Interdyscyplinarność kluczem do rozwoju” Lublin, 17-18 marca 2018 r. abstrakty, zredagowane przez , 181–182. Fundacja na rzecz Promocji Nauki i Rozwoju Tygiel.
  28. Sapota, Wiktoria Antonina, Sebastian Michał Stach, i Zygmunt Wróbel. 2018. „Możliwości oceny powierzchni biomateriałów z wykorzystaniem komercyjnych rozwiązań przetwarzania i analizy obrazu : [prezentacja ustna]”. W X Interdyscyplinarna Konferencja Naukowa Tygiel 2018 „Interdyscyplinarność kluczem do rozwoju” Lublin, 17-18 marca 2018 r. abstrakty, zredagowane przez , 172. Fundacja na rzecz Promocji Nauki i Rozwoju Tygiel.
  29. Stach, Sebastian Michał, Zygmunt Wróbel, i Wiktoria Antonina Sapota. 2018. „Możliwości oceny powierzchni biomateriałów z wykorzystaniem komercyjnych rozwiązań przetwarzania i analizy”. W Współczesne problemy inżynierii materiałowej oraz mechaniki, zredagowane przez , 91–114.
  30. Konsek, Dominika, Sebastian Michał Stach, Ştefan Ţălu, Sirvan Naderi, i Ali Arman. 2018. „Correlation Between 3-D Surface Topography and Different Deposition Times of Engineered Ni@a-C:H Thin Films”. Silicon 10: 2141–2151. https://doi.org/10.1007/s12633-017-9743-6.
  31. Kubisztal, Julian, Marian Kubisztal, Sebastian Michał Stach, i Grzegorz Jacek Haneczok. 2018. „Corrosion Resistance of Anodic Coatings Studied by Scanning Microscopy and Electrochemical Methods”. Surface and Coatings Technology 350: 419–427. https://doi.org/10.1016/j.surfcoat.2018.07.032.
  32. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, i Zygmunt Wróbel. 2017. „Analiza trójwymiarowych obrazów w badaniach topografii powierzchni materiału”. W Rozwój tworzyw inżynierskich i nauk o materiałach, zredagowane przez , 16–29.
  33. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, i Zygmunt Wróbel. 2017. „Analiza trójwymiarowych obrazów w badaniach topografii powierzchni materiału : [abstrakt]”. W Interdyscyplinarność kluczem do rozwoju IX Interdyscyplinarna Konferencja Naukowa Tygiel 2017 abstrakty, zredagowane przez , 431. Fundacja na rzecz Promocji Nauki i Rozwoju Tygiel.
  34. Sapota, Wiktoria Antonina, Sebastian Michał Stach, i Zygmunt Wróbel. 2017. „Możliwości programu Matlab w zakresie analizy i wizualizacji powierzchni zespoleń kostnych stosowanych w leczeniu urazów twarzoczaszki”. W Aplikacyjne metody obliczeniowe oraz zarządzanie danymi, zredagowane przez , 198–214.
  35. Sapota, Wiktoria Antonina, Sebastian Michał Stach, i Zygmunt Wróbel. 2017. „Możliwości programu Matlab w zakresie analizy i wizualizacji powierzchni zespoleń kostnych stosowanych w leczeniu urazów twarzoczaszki : [abstrakt]”. W Interdyscyplinarność kluczem do rozwoju IX Interdyscyplinarna Konferencja Naukowa Tygiel 2017 abstrakty, zredagowane przez , 420–421. Fundacja na rzecz Promocji Nauki i Rozwoju Tygiel.
  36. Talu, Stefan, Tijana Lainovic, Sebastian Michał Stach, M Vilotić, i L Blažić. 2017. „Analysis of the Multifractal Intrinsic Nature of Dental Nanocomposites’ Surface [Abstract]”. W 12th Conference for Young Scientists in Ceramics (CYSC-2017), October 18th-21st, Novi Sad, Serbia. Abstract Book, zredagowane przez , 53.
  37. Ţălu, Ştefan, Dinara Sobola, Pavel Tománek, i Sebastian Michał Stach. 2017. „Micromorphology of AlN Epilayers on Sapphire Substrates”. W International Conference on Computer, Electronics and Communication Engineering CECE 2017 June, 25-26, 2017 Sanya, China, zredagowane przez , 465–470. DEStech Publications, Inc. https://doi.org/10.12783/dtcse/cece2017/14582.
  38. Adamiec, Aleksandra, Sebastian Michał Stach, i Stefan Talu. 2017. „Quantitative Investigations About the Surface Texture Characteristics of the Nickel-Carbon Composite Thin Films Using Stereometric Analysis”. W Null, 153:98–101. https://doi.org/10.2991/amms-17.2017.22.
  39. Gajos-Grzetić, Małgorzata, Oimahmad Rahmonov, i Sebastian Michał Stach. 2017. „Geospatial Technologies in Biology and Medicine : Analysis of Gis Repository”. Geographic Information Systems Conference and Exhibition „GIS ODYSSEY” [24]: 146–154.
  40. Garczyk, Żaneta Agnieszka, Sebastian Michał Stach, Ştefan Ţălu, Dinara Sobola, i Zygmunt Wróbel. 2017. „Stereometric Parameters of Butterfly Wings”. Journal of Biomimetics, Biomaterials and Biomedical Engineering 31: 1–10. https://doi.org/10.4028/www.scientific.net/JBBBE.31.1.
  41. Smagoń, Kamil, Sebastian Michał Stach, Ştefan Ţălu, Ali Arman, Amine Achour, Carlos Luna, Nader Ghobadi, i in. 2017. „Studies of the Micromorphology of Sputtered TiN Thin Films by Autocorrelation Techniques”. The European Physical Journal Plus 132: 1–15. https://doi.org/10.1140/epjp/i2017-11801-5.
  42. Solaymani, Shahram, Atefeh Ghaderi, Laya Dejam, Żaneta Agnieszka Garczyk, Wiktoria Antonina Sapota, Sebastian Michał Stach, Vali Dalouji, Carlos Luna, Seyed Mohammad Elahi, i S. Hossein Elahi. 2017. „Correlation Between the Multifractal Structure, Crystalline and Photoluminescence Properties of Engineered CZO Thin Films”. International Journal of Hydrogen Energy 42: 14205–14219. https://doi.org/10.1016/j.ijhydene.2017.04.045.
  43. Stach, Sebastian Michał, Wiktoria Antonina Sapota, Stefan Talu, Azin Ahmadpourian, Carlos Luna, Nader Ghobadi, Ali Arman, i Mohsen Ganji. 2017. „3-D Surface Stereometry Studies of Sputtered TiN Thin Films Obtained at Different Substrate Temperatures”. Journal of Materials Science-Materials in Electronics, 2113–2122. https://doi.org/10.1007/s10854-016-5774-9.
  44. Stach, Sebastian Michał, Alicja Głuchaczka, Patrycja Siek, Joanna Zając, Stefan Talu, S Trabattoni, S Travazzi, i S Giovanzana. 2017. „Morphological Properties of Siloxane-Hydrogel Contact Lens Surfaces”. Current Eye Research 42: 498–505. https://doi.org/10.1080/02713683.2016.1217546.
  45. Ţălu, Ştefan, Sebastian Michał Stach, Dan Mihai Călugăru, Carmen Alina Lupaşcu, i Simona Delia Nicoară. 2017. „Analysis of Normal Human Retinal Vascular Network Architecture Using Multifractal Geometry”. International Journal of Ophthalmology 10: 434–438. https://doi.org/10.18240/ijo.2017.03.17.
  46. Ţălu, Ştefan, Sebastian Michał Stach, Shikhgasan Ramazanov, Dinara Sobola, i Guseyn Ramazanov. 2017. „Multifractal Characterization of Epitaxial Silicon Carbide on Silicon”. Materials Science-Poland 35: 539–547. https://doi.org/10.1515/msp-2017-0049.
  47. Ţălu, Ştefan, Katarzyna Janus, i Sebastian Michał Stach. 2017. „Nanoscale Patterns in Carbon–Nickel Nanocomposite Thin Films Investigated by AFM and Stereometric Analysis”. International Journal of Materials 4: 54–62.
  48. Stach, Sebastian Michał, Wiktoria Antonina Sapota, Zygmunt Wróbel, i Ştefan Ţălu. 2016. „Assessment of Possibilities of Ceramic Biomaterial Fracture Surface Reconstruction Using Laser Confocal Microscopy and Long Working Distance Objective Lenses”. Microscopy Research and Technique 79: 385–392. https://doi.org/10.1002/jemt.22641.
  49. Talu, S, Sebastian Michał Stach, M Kaczmarska, M Fornal, T Grodzicki, W Pohorecki, i K Burda. 2016. „Multifractal Characterization of Morphology of Human Red Blood Cells Membrane Skeleton”. Journal of Microscopy 262: 59–72. https://doi.org/10.1111/jmi.12342.
  50. Talu, Stefan, Carlos Luna, Azin Ahmadpourian, Amine Achour, Ali Arman, Sirvan Naderi, Nader Ghobadi, Sebastian Michał Stach, i Behroz Safibonab. 2016. „Micromorphology and Fractal Analysis of Nickel–Carbon Composite Thin Films”. Journal of Materials Science-Materials in Electronics 27: 11425–11431. https://doi.org/10.1007/s10854-016-5268-9.
  51. Stach, Sebastian Michał, Shikhgasan Ramazanov, Stefan Talu, Dinar Sobola, i Guseyn Ramazanov. 2015. „Epitaxy of Silicon Carbide on Silicon: Micromorphological Analysis of Growth Surface Evolution”. Superlattices and Microstructures 86: 395–402. https://doi.org/10.1016/j.spmi.2015.08.007.
  52. Stach, Sebastian Michał, Stefan Talu, Davood Raoufi, i Fayegh Hosseinpanahi. 2015. „Film Thickness Effect on Fractality of Tin-Doped In2O3 Thin Films”. Electronic Materials Letters 11: 749–757. https://doi.org/10.1007/s13391-015-4280-1.
  53. Stach, Sebastian Michał, S Talu, V Sueiras, i NM Ziebarth. 2015. „Fractal Analysis of AFM Images of the Surface of Bowman’s Membrane of the Human Cornea”. Annals of Biomedical Engineering 43: 906–916. https://doi.org/10.1007/s10439-014-1140-3.
  54. Stach, Sebastian Michał, Dinara Dallaeva, Stefan Talu, Pavel Kaspar, Pavel Tomanek, Stefano Giovanzana, i Lubomir Grmela. 2015. „Morphological Features in Aluminum Nitride Epilayers Prepared by Magnetron Sputtering”. Materials Science-Poland 33: 175–184. https://doi.org/10.1515/msp-2015-0036.
  55. Stach, Sebastian Michał, D Elenkova, J Zaharieva, M Getsova, I Manolov, M Milanova, i S Talu. 2015. „Morphology and Optical Properties of SiO2-Based Composite Thin Films with Immobilized Terbium(III) Complex with a Biscoumarin Derivative”. International Journal of Polymer Analysis and Characterization 20: 42–56. https://doi.org/10.1080/1023666X.2014.955400.
  56. Stach, Sebastian Michał, Stefan Talu, Boris Klaić, Tea Misic, Jadranka Malina, i Asja Celebic. 2015. „Morphology of Co-Cr-Mo Dental Alloy Surfaces Polished by Three Different Mechanical Procedures”. Microscopy Research and Technique 78: 831–839. https://doi.org/10.1002/jemt.22547.
  57. Stach, Sebastian Michał, Stefan Talu, Shahoo Valedbagi, Reza Bavadi, S. Mohammad Elahi, i Mihai Talu. 2015. „Multifractal Characteristics of Titanium Nitride Thin Films”. Materials Science-Poland 33: 541–548. https://doi.org/10.1515/msp-2015-0086.
  58. Stach, Sebastian Michał, S Talu, SF Alb, i M Salerno. 2015. „Multifractal Characterization of a Dental Restorative Composite After Air-Polishing”. Chaos Solitons & Fractals 71: 7–13. https://doi.org/10.1016/j.chaos.2014.11.009.
  59. Stach, Sebastian Michał, Żaneta Agnieszka Garczyk, Stefan Talu, Shahram Solaymani, Rostam Moradiand, Atefeh Ghaderi, Mohammad Reza Hantehzadeh, Seyed Mohammad Elahi, i Sara Izadyar. 2015. „Multifractal Spectra of Atomic Force Microscope Images of Cu/Fe Nanoparticles Based Films Thickness”. Journal of Electroanalytical Chemistry 749: 31–41. https://doi.org/10.1016/j.jelechem.2015.04.009.
  60. Stach, Sebastian Michał, Żaneta Agnieszka Garczyk, Stefan Talu, Shahram Solaymani, Atefeh Ghaderi, Rostam Moradian, Negin Beryani Nezafat, Seyed Mohammad Elahi, i Hedieh Gholamali. 2015. „Stereometric Parameters of the Cu/Fe NPs Thin Films”. The Journal of Physical Chemistry Part C: Nanomaterials, Interfaces and Hard Matter 119: 17887–17898. https://doi.org/10.1021/acs.jpcc.5b04676.
  61. Stach, Sebastian Michał, Stefan Talu, Shahoo Valedbagi, S. Mohammad Elahi, i Reza Bavadi. 2015. „Surface Morphology of Titanium Nitride Thin Films Synthesized by DC Reactive Magnetron Sputtering”. Materials Science-Poland 33: 137–143. https://doi.org/10.1515/msp-2015-0010.
  62. Stach, Sebastian Michał, S Talu, Z Marković, T Lainović, M Vilotić, null L.Blazić, SF Alb, i D Kakas. 2015. „Surface Roughness and Morphology of Dental Nanocomposites Polished by Four Different Procedures Evaluated by a Multifractal Approach”. Applied Surface Science 330: 20–29. https://doi.org/10.1016/j.apsusc.2014.12.120.
  63. Stach, Sebastian Michał, Żaneta Agnieszka Garczyk, S Talu, T Ghodselahi, A Ghaderi, S Solaymani, i A Boochani. 2015. „Topographic Characterization of Cu-Ni NPs @ A-C:H Films by AFM and Multifractal Analysis”. Journal of Physical Chemistry B 119: 5662–5670. https://doi.org/10.1021/acs.jpcb.5b00042.
  64. Stach, Sebastian Michał, Jerzy Hoła, Łukasz Sadowski, i Jacek Reiner. 2015. „Usefulness of 3D Surface Roughness Parameters for Nondestructive Evaluation of Pull-Off Adhesion of Concrete Layers”. Construction and Building Materials 84: 111–120. https://doi.org/10.1016/j.conbuildmat.2015.03.014.
  65. Stach, Sebastian Michał. 2014. „Modelling Fracture Processes in Orthopaedic Implants”. W Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System Biomaterials and Tissues, zredagowane przez , 331–368. Woodhead.
  66. Gajos-Grzetić, Małgorzata, i Sebastian Michał Stach. 2014. „Repozytorium geoinformacji - na przykładzie konferencji GIS”. PTINT Praktyka i Teoria Informacji Naukowej i Technicznej, 99–107.
  67. Stach, Sebastian Michał, Zygmunt Wróbel, i Aleksander Adam Lamża. 2014. „3D Image Multifractal Analysis and Pore Detection on a Stereometric Measurement File of a Ceramic Coating”. Journal of the European Ceramic Society 34: 3427–3432. https://doi.org/10.1016/j.jeurceramsoc.2014.04.008.
  68. Stach, Sebastian Michał, D Dallaeva, S Talu, P Skarvada, P Tomanek, i L Grmela. 2014. „AFM Imaging and Fractal Analysis of Surface Roughness of AlN Epilayers on Sapphire Substrates”. Applied Surface Science 312: 81–86.
  69. Stach, Sebastian Michał, S Talu, A. J Ghazai, i S Stach. 2014. „Characterization of Surface Roughness of Pt Schottky Contacts on Quaternary N-Al0.08In0.08Ga0.84N Thin Film Assessed by Atomic Force Microscopy and Fractal Analysis”. Journal of Materials Science-Materials in Electronics, 466–477.
  70. Stach, Sebastian Michał, S Talu, J Zaharieva, M Getsova, D Elenkova, i M Milanova. 2014. „Micromorphology Characterization of SiO2-Based Composite Thin Films with Immobilized Terbium(III) Complex”. International Journal of Polymer Analysis and Characterization, 648–660. https://doi.org/10.1080/1023666X.2014.953749.
  71. Stach, Sebastian Michał, S Talu, i S Stach. 2014. „Multifractal Analysis of Drop-Casted Copper (II) Tetrasulfophthalocyanine Film Surfaces on the Indium Tin Oxide Substrates”. Surface and Interface Analysis, 393–398.
  72. Stach, Sebastian Michał, S Talu, A Mendez, G Trejo, i M Talu. 2014. „Multifractal Characterization of Nanostructure Surfaces of Electrodeposited Ni-CP Coatings”. Journal of the Electrochemical Society 161: null.
  73. Stach, Sebastian Michał, S Talu, Z Marković, B. Todorović Marković, i M Talu. 2014. „Multifractal Characterization of Single Wall Carbon Nanotube Thin Films Surface Upon Exposure to Optical Parametric Oscillator Laser Irradiation”. Applied Surface Science 289: 97–106.
  74. Stach, Sebastian Michał, i S Talu. 2014. „Multifractal Characterization of Unworn Hydrogel Contact Lens Surfaces”. Polymer Engineering and Science, 1066–1080. https://doi.org/10.1002/pen.23650.
  75. Stach, Sebastian Michał, S Talu, A Mahajan, D Pathak, T Wagner, A Kumar, RK Bedi, i M Talu. 2014. „Multifractal Characterization of Water Soluble Copper Phthalocyanine Based Films Surfaces”. Electronic Materials Letters, 719–730.
  76. Stach, Sebastian Michał, S Talu, J Zaharieva, M Milanova, D Todorovsky, i S Giovanzana. 2014. „Surface Roughness Characterization of Poly(methylmethacrylate) Films with Immobilized Eu(III) Beta-Diketonates by Fractal Analysis”. International Journal of Polymer Analysis and Characterization, 404–421.
  77. Stach, Sebastian Michał, S Talu, M Ikram, D Pathak, T Wagner, i J-M Nunzi. 2014. „Surface Roughness Characterization of ZnO: TiO2-Organic Blended Solar Cells Layers by Atomic Force Microscopy and Fractal Analysis”. International Journal of Nanoscience 13: null. https://doi.org/10.1142/S0219581X14500203.
  78. Gajos-Grzetić, Małgorzata, i Sebastian Michał Stach. 2013. „Nauczanie e-learningowe na Studiach Podyplomowych : Ochrona informacji niejawnych i administracja bezpieczeństwa informacji”. W Ochrona informacji niejawnych, biznesowych i danych osobowych : materiały IX Kongresu, zredagowane przez Małgorzata Gajos-Grzetić, 57–64. Krajowe Stowarzyszenie Ochrony Informacji Niejawnych.
  79. Gajos-Grzetić, Małgorzata, i Sebastian Michał Stach. 2013. „Presentation of 20 Years of Croatian-Polish GIS Cooperation Based on the Website www.gis.us.edu.pl”. W GIS and Its Implementations, zredagowane przez , 239–246. Croatian Information Technology Society - GIS Forum.
  80. Smyrnova-Trybulska, Eugenia, Sebastian Michał Stach, Adrian Burnus, i Andrzej Szczurek, red. 2012. Wykorzystanie LCMS Moodle jako systemu wspomagania nauczania na odległość. null. Katowice: Uniwersytet Śląski.
  81. Stach, Sebastian Michał, Eugenia Smyrnova-Trybulska, Bartłomiej Fuklin, i Dawid Staniek, red. 2012. Zastosowanie systemów CMS w tworzeniu przestrzeni informacyjno-edukacyjnej w Internecie. null. Katowice: Uniwersytet Śląski.
  82. Stach, Sebastian Michał. 2011. „Comparative Studies of Fracture Surfaces of a Biomaterial with the Use of a Profilographometerand Confocal Microscope”. W Materials Structure & Micromechanics of Fracture Selected, Peer Reviewed Papers from the 6th International Conference „Materials Structure & Micromechanics of Fracture (MSMF-6)”, Brno, Czech Republic, June 28-30, 2010, zredagowane przez Pavel Šandera, 465:271–275. Key Engineering Materials. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.465.271.
  83. Stach, Sebastian Michał. 2011. „New Methods of EDC and 3DMST Fractal Analysis in the Examination of Biomaterial Surface Fractures”. W Materials Structure & Micromechanics of Fracture Selected, Peer Reviewed Papers from the 6th International Conference „Materials Structure & Micromechanics of Fracture (MSMF-6)”, Brno, Czech Republic, June 28-30, 2010, zredagowane przez Pavel Šandera, 465:276–281. Key Engineering Materials. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.465.276.
  84. Stach, Sebastian Michał. 2011. „The Simulation and Modelling of the Crack Path of Biomaterials”. W Materials Structure & Micromechanics of Fracture Selected, Peer Reviewed Papers from the 6th International Conference „Materials Structure & Micromechanics of Fracture (MSMF-6)”, Brno, Czech Republic, June 28-30, 2010, zredagowane przez Pavel Šandera, 465:141–144. Key Engineering Materials. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.465.141.
  85. Stach, Sebastian Michał, i Zygmunt Wróbel. 2010. „Methodology of Examining Fracture Surfaces of Biomaterials by Means of Modelling and Multifractal Analysis”. W Information Technologies in Biomedicine. Vol. 2, zredagowane przez Ewa Piętka i Jacek Kawa, 431–438. Advances in Intelligent and Soft Computing. Springer-Verlag. https://doi.org/10.1007/978-3-642-13105-9_43.
  86. Stach, Sebastian Michał. 2010. „Multifraktalna segmentacja obrazu danych stereometrycznych”. W Systemy wspomagania decyzji, zredagowane przez Alicja Wakulicz-Deja, 373–384. Instytut Informatyki Uniwersytetu Śląskiego.
  87. Stach, Sebastian Michał, Jerzy Cybo, S Roskosz, i J Cwajna. 2009. „Fracture Surface Development Coefficient and Sialon Ceramics’ Bending Strength”. W Fractography of Advanced Ceramics III : Selected, Peer Reviewed Papers from the [3rd] International Conference on Fractography of Advanced Ceramics, Held in Stará Lesná, Slovakia, September, 7-10, 2008, zredagowane przez J Dusza, R Danzer, R Morrell, i G D Quinn, 279–282. Key Engineering Materials. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.409.279.
  88. Stach, Sebastian Michał, Jerzy Cybo, S Roskosz, i J Cwajna. 2009. „Quantitative Description of Overlaps on Sialon Ceramics Fractures by the Multifractal Method”. W Fractography of Advanced Ceramics III : Selected, Peer Reviewed Papers from the [3rd] International Conference on Fractography of Advanced Ceramics, Held in Stará Lesná, Slovakia, September, 7-10, 2008, zredagowane przez J Dusza, R Danzer, R Morrell, i G D Quinn, 394–401. Key Engineering Materials. Trans Tech Publications. https://doi.org/10.4028/www.scientific.net/KEM.409.394.
  89. Stach, Sebastian Michał, Stanislaw Roskosz, Jerzy Cybo, i Jan Cwajna. 2009. „Properties of Sialon Ceramics Evaluated by Means of Multifractal, Surface Stereometry and Quantitative Fractography Techniques”. Materials Characterization 60: 1151–1157. https://doi.org/10.1016/j.matchar.2009.02.013.
  90. Stach, Sebastian Michał, Jerzy Cybo, Stanisław Roskosz, i Jan Cwajna. 2009. „Properties of Sialon Ceramics Evoluated by Means of Multifractal, Surface Stereometry and Quantitative Factography Techniques”. Materials Characterization, 1151–1157.
  91. Stach, Sebastian Michał, Jerzy Cybo, Maria Sozańska, i Jan Cwajna. 2008. „Evaluation of the Share of Overlaps on 34CrMo4 Steel Fractures by Surface Stereometry and Multifractal Analysis Methods”. Inżynieria Materiałowa, 244–246.
  92. Stach, Sebastian Michał, Jerzy Cybo, Stanisław Roskosz, i Jan Cwajna. 2008. „Verification of the stereometric-fractal description of overlaps in sialon ceramics fractures”. Inżynieria Materiałowa, 239–243.
  93. Stach, Sebastian Michał, Jerzy Cybo, Stanisław Roskosz, i Jan Cwajna. 2007. „Evaluation of Sialon Ceramics Crack Resistance via Surface Stereometry and Multifractal Analysis”. Inżynieria Materiałowa, 216–218.
  94. Ankowski, A, M Antonello, P Aprili, F Arneodo, A Badertscher, B Baiboussinov, MB Ceolin, i in. 2006. „Characterization of ETL 9357FLA Photomultiplier Tubes for Cryogenic Temperature Applications”. Nuclear Instruments & Methods in Physics Research Section A Accelerators, Spectrometers, Detectors and Associated Equipment 556: 146–157. https://doi.org/10.1016/j.nima.2005.10.108.
  95. Stach, Sebastian Michał, i Jerzy Cybo. 2006. „Multifractal detection of overlaps based on a stereometric analysis of fracture surface : assumptions”. Materials Characterization 56: 449–453. https://doi.org/10.1016/j.matchar.2006.01.009.
  96. Stach, Sebastian Michał, Jerzy Cybo, S Roskosz, i J Cwajna. 2006. „Multifractal Detection of Overlaps Based on a Stereometric Analysis of Fracture Surfaces : Application to Fractures of Sintered Carbides”. Materials Characterization 56: 429–435. https://doi.org/10.1016/j.matchar.2006.01.007.
  97. Stach, Sebastian Michał, Jerzy Cybo, Jan Cwajna, i Stanisław Roskosz. 2005. „Detection of Overlaps Occurence in Sintered Carbides’ Fractures”. W Proceedings of 9th European Congress on Stereology and Image Analysis and 7th International Conference on Stereology and Image Analysis in Materials Science STERMAT Zakopane, Poland May 10-13, 2005. Vol. 1, zredagowane przez , 290–297. Polish Society for Stereology.
  98. Stach, Sebastian Michał, i Jerzy Cybo. 2005. „Theoretical Basis for the Multifractal Detection of Overlaps Occurence Places Based on a Stereometric Image of Fracture Surface”. W Proceedings of 9th European Congress on Stereology and Image Analysis and 7th International Conference on Stereology and Image Analysis in Materials Science STERMAT Zakopane, Poland May 10-13, 2005. Vol. 1, zredagowane przez , 365–374. Polish Society for Stereology.
  99. Stach, Sebastian Michał, Jerzy Cybo, Jan Cwajna, i Stanisław Roskosz. 2005. „Multifractal Description of Fracture Morphology : Full 3D Analysis of a Fracture Surface”. Materials Science-Poland 23: 577–584.
  100. Stach, Sebastian Michał, Jerzy Cybo, Jan Cwajna, i Stanisław Roskosz. 2005. „Multifractal Description of Fracture Morphology : Quasi - 3D Analysis of Fracture Surface”. Materials Science-Poland 23: 567–575.
  101. Cybo, Jerzy, Sebastian Michał Stach, Jan Cwajna, i Stanisław Roskosz. 2004. „Stereometric/fractal fracture description in materials decohesion investigations”. Inżynieria Materiałowa, 437–439.
  102. Stach, Sebastian Michał, Jerzy Cybo, Sebastin Stach, Stanisław Roskosz, i Jan Cwajna. 2004. „Multifractal or fractographic fracture line description?” Inżynieria Materiałowa, 440–443.
  103. Stach, Sebastian Michał, Jerzy Cybo, Stanisław Roskosz, i Jan Cwajna. 2003. „Multifractal description of fracture morphology: investigation of the fractures of sintered carbides”. Materials Characterization 51: 87–93.
  104. Stach, Sebastian Michał, i Jerzy Cybo. 2003. „Multifractal description of fracture morphology: theoretical basis”. Materials Characterization 51: 79–86.
  105. Stach, Sebastian Michał, Jerzy Cybo, i Jerzy Chmiela. 2001. „Fracure surface - fractal or multifractal?” Materials Characterization 46: 163–167.
  106. Cybo, Jerzy, Jerzy Chmiela, Joanna Maszybrocka, i Sebastian Michał Stach. 2000. „Olympus BX60M i Visilog 4 w zastosowaniu do badań stereologicznych”. Krzepnięcie Metali i Stopów, Komis. Odlew. PAN, 409–416.
  107. Cybo, Jerzy, Adam Gołąb, Jerzy Chmiela, Sebastian Michał Stach, i Joanna Maszybrocka. 2000. „Zastosowanie komputerowej analizy obrazu do ilościowego opisu powierzchni niepłaskich”. Krzepnięcie Metali i Stopów, Komis. Odlew. PAN, 425–432.
  108. Stach, Sebastian Michał, Jerzy Cybo, i Jerzy Chmiela. 2000. „Multifraktalny charakter powierzchni przełomu”. Zeszyty Naukowe Politechniki Świętokrzyskiej. Mechanika 72: 447–453.


  • Advances in Materials Science and Engineering
  • Applied Surface Science
  • Arabian Journal of Chemistry
  • Composites Part B
  • Computers & Geosciences
  • Journal of Advanced Research
  • Journal of Materials Science: Materials in Electronics
  • Materials Science & Engineering A
  • Mathematics and Computers in Simulation
  • Materials
  • Materials in Electronics
  • Materials Science & Engineering A
  • Surface Review and Letters

Redaktor gościnny

This collection aims to collect state-of-the-art research work or comprehensive review papers in the field of biomaterials, including materials in medicine, medical devices, biosensors, implants, scaffolds for tissue engineering, drug delivery systems, as well as antibacterial and dental materials. All material classes are considered, including metals, ceramics, polymers, and their composites, both synthetic (man-made) materials and those of natural origin. All articles published in this Special Issue are subject to careful editorial selection. We intend for this Issue to be a good forum for disseminating excellent research findings as well as sharing innovative ideas in the field of biomaterials.

Feature Papers in „Biomaterials” Section

This Special Issue aims to highlight new types of advanced biomaterials and advanced technologies, applicable in medicine and biology, but also as tools for research. Studies focusing on the theoretical simulation, computerized procedures, mathematical algorithms, and optimal research techniques applied to biocompatible materials are also welcome. Researchers involved in the field of biomaterials and related disciplines (science, engineering, and manufacturing industry) are invited to publish their recent studies in this Special Issue.

Advanced Topographical and Morphological Characterizations of Materials for Biomedical Applications

The main purpose of this Special Issue is to publish selected, original scientific papers written by Polish scientists describing research work carried out on materials using the latest technological achievements. The thematic scope is by no means limited, and we count on interesting and innovative papers that contribute to the development of this interdisciplinary area of scientific and technical research, which is materials research.


However, it must be clear that the topic of interest concerns applications in science or engineering and practical use of the results of the designed and tested materials, which will help to formulate new conclusions after experimental verification or after comparison with other methods.

Collection fo scientific Papers by Polish Scientists in the Field of Materials Research

Certyfikaty i ukończone szkolenia

PRINCE2® Foundation

90%

Scrum Master™ I

70%

M_o_R® Foundation

90%

HTML5 & CSS3

85%

PMBOK

45%